Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
J Pharm Sci ; 112(6): 1523-1538, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822273

RESUMO

Nifurtimox is a nitroheterocyclic drug employed for treatment of trypanosomiases (Chagas disease and West African sleeping sickness); its use for certain cancers has also been assessed. Despite having been in the market for over 50 years, knowledge of nifurtimox is still fragmentary and incomplete. Relevant aspects of the chemistry and biology of nifurtimox are reviewed to summarize the current knowledge of this drug. These comprise its chemical synthesis and the preparation of some analogues, as well as its chemical degradation. Selected physical data and physicochemical properties are also listed, along with different approaches toward the analytical characterization of the drug, including electrochemical (polarography, cyclic voltammetry), spectroscopic (ultraviolet-visible, nuclear magnetic resonance, electron spin resonance), and single crystal X-ray diffractometry. The array of polarographic, ultraviolet-visible spectroscopic, and chromatographic methods available for the analytical determination of nifurtimox (in bulk drug, pharmaceutical formulations, and biological samples), are also presented and discussed, along with chiral chromatographic and electrophoretic alternatives for the separation of the enantiomers of the drug. Aspects of the drug likeliness of nifurtimox, its classification in the Biopharmaceutical Classification System, and available pharmaceutical formulations are detailed, whereas pharmacological, chemical, and biological aspects of its metabolism and disposition are discussed.


Assuntos
Doença de Chagas , Farmácia , Humanos , Nifurtimox/química , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Doença de Chagas/tratamento farmacológico , Preparações Farmacêuticas
2.
Curr Top Med Chem ; 23(3): 159-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515019

RESUMO

BACKGROUND: Chagas disease (American Trypanosomiasis) is classified by the World Health Organization (WHO) as one of the seventeen neglected tropical diseases (NTD), affecting, mainly, several regions of Latin America. INTRODUCTION: However, immigration has expanded the range of this disease to other continents. Thousands of patients with Chagas disease die annually, yet no new therapeutics for Chagas disease have been approved, with only nifurtimox and benznidazole available. Treatment with these drugs presents several challenges, including protozoan resistance, toxicity, and low efficacy. Natural products, including the secondary metabolites found in plants, offer a myriad of complex structures that can be sourced directly or optimized for drug discovery. METHODS: Therefore, this review aims to assess the literature from the last 10 years (2012-2021) and present the anti-T. cruzi compounds isolated from plants in this period, as well as briefly discuss computational approaches and challenges in natural product drug discovery. Using this approach, more than 350 different metabolites were divided based on their biosynthetic pathway alkaloids, terpenoids, flavonoids, polyketides, and phenylpropanoids which displayed activity against different forms of this parasite epimastigote, trypomastigote and more important, the intracellular form, amastigote. CONCLUSION: In this aspect, there are several compounds with high potential which could be considered as a scaffold for the development of new drugs for the treatment of Chagas disease-for this, more advanced studies must be performed including pharmacokinetics (PK) and pharmacodynamics (PD) analysis as well as conduction of in vivo assays, these being important limitations in the discovery of new anti-T. cruzi compounds.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/química , Doença de Chagas/tratamento farmacológico , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Descoberta de Drogas
3.
Acta Parasitol ; 67(4): 1584-1593, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36029434

RESUMO

PURPOSE: The objective of this study was to molecularly characterize Mexican isolates of T. cruzi obtained from infected triatomine bugs (the vectors of T. cruzi) and to evaluate their susceptibility to Nifurtimox (NFX). METHODS: Three isolates obtained from Triatoma dimidiata (collected in the State of Veracruz) and one isolate obtained from Triatoma bassolsae (collected in the State of Puebla) were molecularly characterized and the expression of genes associated with natural resistance to NFX was analyzed by qPCR. RESULTS: Molecular characterization by PCR showed that isolates Zn3, Zn5, and SRB1 belong to the DTU TcI, while isolate Sum3 belongs to TcIV. The latter was also confirmed by sequencing of mitochondrial genes. Isolate Zn5 was the most sensitive to treatment with NFX (IC50, 6.8 µM), isolates SRB1 and Zn3 were partially resistant (IC50, 12.8 µM and 12.7 µM) and isolate Sum3 showed a high degree of resistance to NFX (IC50, 21.4 µM). We also found an association between decreased NTR1 or OYE gene expression with NFX resistance. CONCLUSION: Our results also evidenced a high variability in the susceptibility to NFX of these T. cruzi isolates Central and Southeastern Mexico, suggesting the presence of naturally resistant isolates circulating in the country. These results have important implications for defining treatment policies for patients with Chagas disease.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/genética , Nifurtimox/farmacologia , México , Insetos Vetores , Genótipo
4.
Front Cell Infect Microbiol ; 12: 749476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186785

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease which is currently treated by nifurtimox (NFX) and benznidazole (BZ). Nevertheless, the mechanism of action of NFX is not completely established. Herein, we show the protective effects of T. cruzi mitochondrial peroxiredoxin (MPX) in macrophage infections and in response to NFX toxicity. After a 3-day treatment of epimastigotes with NFX, MPX content increased (2.5-fold) with respect to control, and interestingly, an MPX-overexpressing strain was more resistant to the drug. The generation of mitochondrial reactive species and the redox status of the low molecular weight thiols of the parasite were not affected by NFX treatment indicating the absence of oxidative stress in this condition. Since MPX was shown to be protective and overexpressed in drug-challenged parasites, non-classical peroxiredoxin activity was studied. We found that recombinant MPX exhibits holdase activity independently of its redox state and that its overexpression was also observed in temperature-challenged parasites. Moreover, increased holdase activity (2-fold) together with an augmented protease activity (proteasome-related) and an enhancement in ubiquitinylated proteins was found in NFX-treated parasites. These results suggest a protective role of MPX holdase activity toward NFX toxicity. Trypanosoma cruzi has a complex life cycle, part of which involves the invasion of mammalian cells, where parasite replication inside the host occurs. In the early stages of the infection, macrophages recognize and engulf T. cruzi with the generation of reactive oxygen and nitrogen species toward the internalized parasite. Parasites overexpressing MPX produced higher macrophage infection yield compared with wild-type parasites. The relevance of peroxidase vs. holdase activity of MPX during macrophage infections was assessed using conoidin A (CA), a covalent, cell-permeable inhibitor of peroxiredoxin peroxidase activity. Covalent adducts of MPX were detected in CA-treated parasites, which proves its action in vivo. The pretreatment of parasites with CA led to a reduced infection index in macrophages revealing that the peroxidase activity of peroxiredoxin is crucial during this infection process. Our results confirm the importance of peroxidase activity during macrophage infection and provide insights for the relevance of MPX holdase activity in NFX resistance.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Macrófagos , Mamíferos , Nifurtimox/metabolismo , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Trypanosoma cruzi/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216485

RESUMO

The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds' perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov-Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 µM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.


Assuntos
Antivirais/farmacologia , Flavonoides/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Nifurtimox/farmacologia , Transcriptoma/efeitos dos fármacos , Células A549 , Linhagem Celular Tumoral , Humanos , Influenza Humana/genética
6.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36613783

RESUMO

Chagas disease is caused by Trypanosoma cruzi and represents a major public health problem, which is endemic in Latin America and emerging in the rest of the world. The two drugs that are currently available for its treatment, Benznidazole and Nifurtimox, are partially effective in the chronic phase of the disease. In this study, we designed and synthesized the benzyl ester of N-isopropyl oxamic acid (B-NIPOx), which is a non-polar molecule that crosses cell membranes. B-NIPOx is cleaved inside the parasite by carboxylesterases, releasing benzyl alcohol (a molecule with antimicrobial activity), and NIPOx, which is an inhibitor of α-hydroxy acid dehydrogenase isozyme II (HADH-II), a key enzyme in T. cruzi metabolism. We evaluated B-NIPOx cytotoxicity, its toxicity in mice, and its inhibitory activity on purified HADH-II and on T. cruzi homogenates. We then evaluated the trypanocidal activity of B-NIPOx in vitro and in vivo and its effect in the intestine of T. cruzi-infected mice. We found that B-NIPOx had higher trypanocidal activity on epimastigotes and trypomastigotes than Benznidazole and Nifurtimox, that it was more effective to reduce blood parasitemia and amastigote nests in infected mice, and that, in contrast to the reference drugs, it prevented the development of Chagasic enteropathy.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Camundongos , Animais , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Isoenzimas
7.
J Inorg Biochem ; 219: 111428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774450

RESUMO

Four N-acylhydrazones of general formulae [R1-C(O)-NH-N=C(R2)(5-nitrofuryl)] with (R1 = ferrocenyl or cyrhetrenyl and R2 = H or Me) are synthesized and characterized in solution and in the solid-state. Comparative studies of their stability in solution under different experimental conditions and their electrochemical properties are reported. NMR studies reveal that the four compounds are stable in DMSO­d6 and complementary UV-Vis studies confirm that they also exhibit high stability in mixtures DMSO:H2O at 37 °C. Electrochemical studies show that the half-wave potential of the nitro group of the N-acylhydrazones is smaller than that of the standard drug nifurtimox and the reduction process follows a self-protonation mechanism. In vitro studies on the antiparasitic activities of the four complexes and the nifurtimox against Trypanosoma cruzi and Trypanosoma brucei reveal that: i) the N-acylhydrazones have a potent inhibitory growth activity against both parasites [EC50 in the low micromolar (in T. cruzi) or even in the nanomolar (in T. brucei) range] and ii) cyrhetrenyl derivatives are more effective than their ferrocenyl analogs. Parallel studies on the L6 rat skeletal myoblast cell line have also been conducted, and the selectivity indexes determined. Three of the four N-acylhydrazones showed higher selectivity towards T. brucei than the standard drug nifurtimox. Additional studies suggest that the organometallic compounds are bioactivated by type I nitroreductase enzymes.


Assuntos
Compostos Ferrosos/química , Hidrazonas/química , Hidrazonas/farmacologia , Nitrofuranos/química , Tripanossomicidas/farmacologia , Animais , Linhagem Celular , Eletroquímica/métodos , Humanos , Nifurtimox/farmacologia , Nitrorredutases/metabolismo , Compostos Organometálicos/química , Ratos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
8.
Biomedica ; 40(4): 749-763, 2020 12 02.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33275352

RESUMO

Introduction: Trypanosoma cruzi, the causative agent of Chagas disease, shows substantial phenotypic and genotypic heterogeneity, which can influence the epidemiological and clinical variations of the disease and the sensitivity to the drugs used in the treatment. Objective: To assess the in vitro susceptibility to benznidazole, nifurtimox, and posaconazole of 40 cloned strains of T. cruzi isolated in Paraguay belonging to different genotypes, hosts, and localities. Materials and methods: We incubated the parasites in their epimastigote stage in LIT culture medium with different concentrations of each drug in triplicate assays. The degree of susceptibility was estimated by the inhibitory concentrations of 50 and 90% (IC50 and IC90) to obtain the average values and the standard deviation for each strain and drug. We determined the statistical significance between groups by analysis of variances with the Wilcoxon/Kruskal-Wallis non-parametric test and values of p<0.05. Results: A wide range of drug response was observed. Two groups of parasites (A and B) were identified as having significant differences in susceptibility to benznidazole (p<0.0001), and three groups (A, B, C) to nifurtimox and posaconazole (p<0.0001). Conclusions: Overall, the isolates were more susceptible to nifurtimox than benznidazole and posaconazole. Such differences highlight the heterogeneity of T. cruzi populations circulating in Paraguay, an aspect to consider in the treatment and follow up of patients.


Introducción. Trypanosoma cruzi, agente causal de la enfermedad de Chagas, exhibe una sustancial heterogeneidad fenotípica y genotípica que puede influir en las variaciones epidemiológicas y clínicas de la enfermedad, así como en la sensibilidad a los fármacos utilizados en el tratamiento. Objetivo. Evaluar la sensibilidad in vitro al benznidazol, el nifurtimox y el posaconazol de 40 cepas clonadas de T. cruzi de Paraguay, con distintos genotipos, huéspedes y localidades de origen. Materiales y métodos. En su estado epimastigote, los parásitos se incubaron en medio de cultivo LIT (Liver Infusion Tryptose) con diferentes concentraciones de cada fármaco en ensayos por triplicado. El grado de sensibilidad se estimó a partir de las concentraciones inhibitorias del 50 y el 90% (IC50 e IC90) y se obtuvieron los valores promedio y la desviación estándar de cada cepa y fármaco. La significación estadística entre grupos se determinó mediante análisis de varianzas con el test no paramétrico de Wilcoxon/Kruskal-Wallis y valores de p<0,05. Resultados. Se observó un amplio rango de respuesta a los fármacos. Se identificaron dos grupos de parásitos (A y B) con diferencias significativas en la sensibilidad al benznidazol (p<0,0001), y tres grupos (A, B, C) en cuanto a la sensibilidad al nifurtimox y el posaconazol (p<0,0001). Conclusiones. En general, las cepas fueron más sensibles al nifurtimox que al benznidazol y el posaconazol. Estas diferencias evidencian la heterogeneidad de las poblaciones de T. cruzi que circulan en Paraguay, lo que debe considerarse en el tratamiento y el seguimiento de las personas afectadas.


Assuntos
Nifurtimox/farmacologia , Nitroimidazóis/farmacologia , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Análise de Variância , Genótipo , Dose Letal Mediana , Paraguai , Fenótipo , Trypanosoma cruzi/genética
9.
Acta Trop ; 201: 105218, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31610148

RESUMO

Despite more than 100 years since it was firstly described Chagas disease, only two drugs are available to treat Chagas disease: Nifurtimox launched by Bayer in 1965 and benznidazole launched by Roche in 1971. Drug discovery initiatives have been looking for new compounds as an alternative to these old drugs. Although new platforms have been used with the latest technologies, a critical step on that process still relies on the in vivo model. Unfortunately, to date, available animal models have limited predictive value and there is no standardization. With the aim to better understand the role of benznidazole, the current standard of care of Chagas disease, we performed this review. We intend to analyze the influence of the experimental design of the most used animal model, the murine model, in the assessment of the efficacy endpoint.


Assuntos
Doença de Chagas/tratamento farmacológico , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos
10.
Acta Trop ; 199: 105120, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31376368

RESUMO

Chagas disease has become a global health problem due to migration of infected people out of Latin America to non-endemic countries. For more than 40 years, only the nitroimidazole compounds Benznidazole and Nifurtimox, have been used for specific treatment of Trypanosoma cruzi infection with disappointing results, specially due to the long duration of treatment and adverse events in the chronic phase. In the last years, ergosterol inhibitors have been also proposed for specific treatment. Different randomized clinical trials were performed for evaluating their treatment efficacy and safety. One of the greatest concerns in clinical trials is to provide an early surrogate biomarker of response to trypanocidal chemotherapy. Serological response is slow and the classical parasitological tests have poor sensitivity and are time-consuming. Nowadays, PCR is the most helpful tool for assessing treatment response in a short period of time. Different protocols of PCR have been developed, being quantitative real time PCR based on amplification of repetitive satellite or minicircle DNA sequences plus an internal amplification standard, the mostly employed strategies in clinical trials. Standardized protocols and the use of an external quality assessment ensure adequate technical procedures and reliable data. Clinical trials have shown a significant reduction in parasite loads, reaching undetectable DNA levels in bloodstream after specific treatment, however events of treatment failure have also been reported. Treatment failure could be due to inadequate penetrance of the drugs into the affected tissues, to the presence of primary or secondary drug resistance of the infecting strains as well as to the existence of dormant parasite variants reluctant to drug action. The early diagnosis of drug resistance would improve clinical management of Chagas disease patients, allowing dictating alternative therapies with a combination of existing drugs or new anti-T. cruzi agents. The aim of this review was to describe the usefulness of detecting T.cruzi DNA by means of real time PCR assays, as surrogate biomarker in clinical trials for evaluating new drugs for CD or new regimens of available drugs and the possibility to detect treatment failure.


Assuntos
Doença de Chagas/terapia , Ácidos Nucleicos/análise , Reação em Cadeia da Polimerase em Tempo Real , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Biomarcadores , Doença de Chagas/parasitologia , Doença Crônica , Resistência a Medicamentos/genética , Humanos , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Ácidos Nucleicos/sangue , Carga Parasitária , Falha de Tratamento , Resultado do Tratamento , Tripanossomicidas/farmacologia , Trypanosoma cruzi/genética
11.
Biomed Res Int ; 2019: 8301569, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355283

RESUMO

Chagas disease is a tropical illness caused by the protozoan Trypanosoma cruzi. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-T. cruzi effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in T. cruzi. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.


Assuntos
Proliferação de Células/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Fenotiazinas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Doença de Chagas/parasitologia , Corantes/farmacologia , Humanos , Azul de Metileno/análogos & derivados , Azul de Metileno/farmacologia , Nifurtimox/farmacologia , Nitroimidazóis/farmacologia , Cloreto de Tolônio/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/patogenicidade
12.
Eur Rev Med Pharmacol Sci ; 23(6): 2576-2586, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30964186

RESUMO

OBJECTIVE: This work aims to collect publications of available drugs for reposition and new substance development against the Chagas disease, since they represent the beginning of a path for new discoveries of viable alternatives to improve the prognosis of millions of patients around the world. PATIENTS AND METHODS: An extended research on English and Portuguese-language literature in the Scientific Electronic Library Online - Scielo, SciFinder and PubMed - database was made. The bibliography was screened using the keywords "Chagas Disease" and "Treatment". RESULTS: Despite the low resources available for research and development of drugs against Chagas disease, the knowledge produced in this area is large but not directly proportional to the therapeutic advances. Two categories were analyzed, such as drug repositioning, and new substances were researched. CONCLUSIONS: Even if great findings were reported, more efforts are necessary to find new therapies against Trypanosoma cruzi (T. cruzi).


Assuntos
Doença de Chagas/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Doença de Chagas/diagnóstico , Reposicionamento de Medicamentos , Humanos , Estrutura Molecular , Nifurtimox/química , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Nitroimidazóis/química , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Prognóstico , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
13.
PLoS Negl Trop Dis ; 13(1): e0007088, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640901

RESUMO

Trypanosoma cruzi has three distinct life cycle stages; epimastigote, trypomastigote, and amastigote. Amastigote is the replication stage in host mammalian cells, hence this stage of parasite has clinical significance in drug development research. Presence of extracellular amastigotes (EA) and their infection capability have been known for some decades. Here, we demonstrate that EA can be utilized as an axenic culture to aid in stage-specific study of T. cruzi. Amastigote-like property of axenic amastigote can be sustained in LIT medium at 37°C at least for 1 week, judging from their morphology, amastigote-specific UTR-regulated GFP expression, and stage-specific expression of selected endogenous genes. Inhibitory effect of benznidazole and nifurtimox on axenic amastigotes was comparable to that on intracellular amastigotes. Exogenous nucleic acids can be transfected into EA via conventional electroporation, and selective marker could be utilized for enrichment of transfectants. We also demonstrate that CRISPR/Cas9-mediated gene knockout can be performed in EA. Essentiality of the target gene can be evaluated by the growth capability of the knockout EA, either by continuation of axenic culturing or by host infection and following replication as intracellular amastigotes. By taking advantage of the accessibility and sturdiness of EA, we can potentially expand our experimental freedom in studying amastigote stage of T. cruzi.


Assuntos
Expressão Gênica , Técnicas de Inativação de Genes/métodos , Genética Microbiana/métodos , Biologia Molecular/métodos , Testes de Sensibilidade Parasitária/métodos , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Antiprotozoários/farmacologia , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eletroporação , Nifurtimox/farmacologia , Nitroimidazóis/farmacologia , Trypanosoma cruzi/crescimento & desenvolvimento
14.
J Vector Borne Dis ; 56(3): 237-243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32655073

RESUMO

BACKGROUND & OBJECTIVES: In Venezuela, Chagas disease (ChD) is considered a serious health problem, with about 6 million people at risk; and acute outbreaks due to oral transmission of Chagas Disease (OChD) are becoming increasingly important. In 2007 there was a major outbreak of OChD and although patients from this episode were treated with nifurtimox (Lampit®-Bayer), about 70% therapeutic failure was registered. These results led us to examine whether parasite's drug susceptibility was related to this therapeutic failure. METHODS: The Trypanosoma cruzi parasites were isolated by haemoculture of the peripheral blood drawn from the pre- and post-nifurtimox treated patients infected in the 2007 OChD outbreak at Caracas, Venezuela. The in vitro assays for drug testing were performed by the MTT methodology followed by calculation of inhibitory concentration-50 (IC50) values. RESULTS: Parasite isolates obtained from the infected patients prior and after nifurtimox treatment when subjected to variable concentrations of the drug showed great heterogeneity in susceptibility with IC50 values ranging from 4.07 ± 1.82 to 94.92 ± 7.24 µM. INTERPRETATION & CONCLUSION: The high heterogeneity in nifurtimox IC50 values in the isolates and clones from the OChD patients, suggests that the therapeutic failure to nifurtimox could be due in part to a phenotypic variability that existed in the wild parasite population at the original source of contamination. Though, further pharmacological studies are needed to confirm the existence of natural nifurtimox resistance in the parasite.


Assuntos
Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nifurtimox/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/epidemiologia , Surtos de Doenças , Resistência a Medicamentos , Genótipo , Humanos , Concentração Inibidora 50 , Falha de Tratamento , Trypanosoma cruzi/genética , Venezuela/epidemiologia
15.
PLoS Negl Trop Dis ; 12(11): e0006980, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30475806

RESUMO

Chemotherapy continues to have a major impact on reducing the burden of disease caused by trypanosomatids. Unfortunately though, the mode-of-action (MoA) of antitrypanosomal drugs typically remains unclear or only partially characterised. This is the case for four of five current drugs used to treat Human African Trypanosomiasis (HAT); eflornithine is a specific inhibitor of ornithine decarboxylase. Here, we used a panel of T. brucei cellular assays to probe the MoA of the current HAT drugs. The assays included DNA-staining followed by microscopy and quantitative image analysis, or flow cytometry; terminal dUTP nick end labelling to monitor mitochondrial (kinetoplast) DNA replication; antibody-based detection of sites of nuclear DNA damage; and fluorescent dye-staining of mitochondria or lysosomes. We found that melarsoprol inhibited mitosis; nifurtimox reduced mitochondrial protein abundance; pentamidine triggered progressive loss of kinetoplast DNA and disruption of mitochondrial membrane potential; and suramin inhibited cytokinesis. Thus, current antitrypanosomal drugs perturb distinct and specific cellular compartments, structures or cell cycle phases. Further exploiting the findings, we show that putative mitogen-activated protein-kinases contribute to the melarsoprol-induced mitotic defect, reminiscent of the mitotic arrest associated signalling cascade triggered by arsenicals in mammalian cells, used to treat leukaemia. Thus, cytology-based profiling can rapidly yield novel insight into antitrypanosomal drug MoA.


Assuntos
Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Biologia Celular , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Melarsoprol/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitose/efeitos dos fármacos , Nifurtimox/farmacologia , Pentamidina/farmacologia , Suramina/farmacologia , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia
16.
Chem Biol Drug Des ; 92(3): 1670-1682, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29745048

RESUMO

Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/química , Triazóis/química , Tripanossomicidas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/veterinária , Masculino , Camundongos , Nifurtimox/química , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos
17.
Med Chem ; 14(6): 573-584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669503

RESUMO

BACKGROUND: Neglected diseases are becoming more prevalent due to globalization. This has inspired active research in the development of new drugs for the treatment of parasitic diseases such as Chagas disease. OBJECTIVES: With the aim of finding new trypanocidal agents, we report the in vitro evaluation of a new series of 3-amidocoumarins with or without hydroxyl substituents at position 4 of the coumarin ring. METHODS: Electrochemical and biological assays were performed in order to assess the antioxidant and trypanocidal potential of these compounds and to better understand the mechanisms involved in their activity. RESULTS: Most of the studied compounds showed high trypanocidal activity against both epimastigote and trypomastigote forms, with IC50 values in the low micromolar range. Some of them have greater activity and selectivity than the reference compound, nifurtimox. CONCLUSION: Compound 2 is the most active of this series, being also non-cytotoxic against murine RAW 264.7 macrophages. Electrochemical and radical scavenging experiments were carried out, providing new information about the profile of the best derivatives, and the potential therapeutic application of the new 3-amidocoumarins.


Assuntos
Amidas/farmacologia , Antioxidantes/farmacologia , Cumarínicos/farmacologia , Tripanossomicidas/farmacologia , Amidas/síntese química , Amidas/química , Amidas/toxicidade , Animais , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/toxicidade , Cromanos/farmacologia , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/toxicidade , Técnicas Eletroquímicas , Radicais Livres/química , Camundongos , Modelos Químicos , Estrutura Molecular , Nifurtimox/farmacologia , Testes de Sensibilidade Parasitária , Células RAW 264.7 , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/toxicidade
18.
Exp Parasitol ; 186: 50-58, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29448038

RESUMO

Although many Trypanosoma cruzi (T. cruzi) strains isolated from a wide range of hosts have been characterized, there is a lack of information about biological features from vertically transmitted strains. We describe the molecular and biological characteristics of the T. cruzi VD strain isolated from a congenital Chagas disease patient. The VD strain was typified as DTU TcVI; in vitro sensitivity to nifurtimox (NFX) and beznidazole (BZ) were 2.88 µM and 6.19 µM respectively, while inhibitory concentrations for intracellular amastigotes were 0.24 µM for BZ, and 0.66 µM for NFX. Biological behavior of VD strain was studied in a mouse model of acute infection, resulting in high levels of parasitemia and mortality with a rapid clearence of bloodstream trypomastigotes when treated with BZ or NFX, preventing mortality and reducing parasitic load and intensity of inflammatory infiltrate in skeletal and cardiac muscle. Treatment-induced parasitological cure, evaluated after immunossupression were 41% and 35% for BZ and NFX treatment respectively, suggesting a partial response to these drugs in elimination of parasite burden. This exhaustive characterization of this T. cruzi strain provides the basis for inclusion of this strain in a panel of reference strains for drug screening and adds a new valuable tool for the study of experimental T. cruzi infection.


Assuntos
Doença de Chagas/congênito , Nifurtimox/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/patogenicidade , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Chlorocebus aethiops , DNA de Protozoário/análise , Modelos Animais de Doenças , Feminino , Coração/parasitologia , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , Miocárdio/patologia , Nifurtimox/farmacologia , Nitroimidazóis/farmacologia , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Distribuição Aleatória , Tripanossomicidas/farmacologia , Trypanosoma cruzi/classificação , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Células Vero
19.
Mini Rev Med Chem ; 18(9): 776-780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-26202205

RESUMO

Chagas disease is caused by the parasite Trypanosoma cruzi and is regularly found among particular people living in Central and South America. Paediatric Chagas disease occurs in 1-10% of infants of infected mothers. The major important point considered in the treatment of congenital Chagas disease focuses on killing the parasite in acute infection and managing signs and symptoms in later stages. Nowadays, two drugs benznidazole and nifurtimox are currently available in the market for the treatment of paediatric Chagas disease.


Assuntos
Antiparasitários/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Descoberta de Drogas , Nifurtimox/farmacologia , Nitroimidazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Antiparasitários/síntese química , Antiparasitários/química , Humanos , Nifurtimox/síntese química , Nifurtimox/química , Nitroimidazóis/síntese química , Nitroimidazóis/química , Testes de Sensibilidade Parasitária
20.
Sci Rep ; 7(1): 12073, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935948

RESUMO

American Trypanosomiasis or Chagas disease is a prevalent, neglected and serious debilitating illness caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The current chemotherapy is limited only to nifurtimox and benznidazole, two drugs that have poor efficacy in the chronic phase and are rather toxic. In this scenario, more efficacious and safer drugs, preferentially acting through a different mechanism of action and directed against novel targets, are particularly welcome. Cruzipain, the main papain-like cysteine peptidase of T. cruzi, is an important virulence factor and a chemotherapeutic target with excellent pre-clinical validation evidence. Here, we present the identification of new Cruzipain inhibitory scaffolds within the GlaxoSmithKline HAT (Human African Trypanosomiasis) and Chagas chemical boxes, two collections grouping 404 non-cytotoxic compounds with high antiparasitic potency, drug-likeness, structural diversity and scientific novelty. We have adapted a continuous enzymatic assay to a medium-throughput format and carried out a primary screening of both collections, followed by construction and analysis of dose-response curves of the most promising hits. Using the identified compounds as a starting point a substructure directed search against CHEMBL Database revealed plausible common scaffolds while docking experiments predicted binding poses and specific interactions between Cruzipain and the novel inhibitors.


Assuntos
Antiprotozoários/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Kinetoplastida/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antiprotozoários/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Kinetoplastida/enzimologia , Kinetoplastida/fisiologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Nifurtimox/química , Nifurtimox/farmacologia , Nitroimidazóis/química , Nitroimidazóis/farmacologia , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...